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Abstract: Let S be a bipartite semigraph with |NXa(y)| ≥ 1 for every y ∈ Y . A vertex x ∈ X hyper dominates
y ∈ Y if y ∈ Na(x) or y ∈ Na(NY a(x)). A subset D ⊆ X is a hyper dominating set of S if every y ∈ Y is hyper
dominated by a vertex of D. A subset D ⊆ X is called a minimal hyper dominating set of S if no proper subset of
D is a hyper dominating set of S. The minimum cardinality of a minimal hyper dominating set of S is called hyper
domination number of S and is denoted by γha(S). The concept of hyper independence and hyper irredundant is
introduced. Inequalities involving dominating parameters and irredundant parameters are proved.
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1 Introduction
Semigraphs introduced by E.Sampathkumar is an in-
teresting type of generalization of the concept of
graph. The semigraphs are closer to graphs in some
sense than hyper graphs [1]. Jeyabharathi et al. [4]
used the concept of semigraphs for DNA splicing. Das
[2] used semigraphs for studying a topological invari-
ant of a compact orientable 2-manifold surface and
about the generator of a face of relevant surfaces.

Road networks can be modeled using semi-
graphs. Traffic routing and density of traffic in junc-
tion may be studied through domination in semi-
graphs. Adjacency domination in semigraphs was
defined by Kamath and Bhat [6]. Strong and weak
domination was defined by S.S.Kamath[5] and Saroja
R.Hebber. Gomathi[3] defined the e−domination,
ev−domination and (m, e)−strong domination in
semigraphs. The concept of domination in bipar-
tite semigraphs was defined by Venkatakrishnan and
Swaminathan [11]. In this sequel, we define the hyper
domination in bipartite semigraphs.

2 Preliminaries
We give the definitions as in [7].

Definition 1 A semigraph S is a pair (V,X) where V
is a nonempty set whose elements are called vertices
of S, and X is a set of ordered n−tuples, called edges
of S, of distinct vertices, for various n ≥ 2, satisfying
the following conditions:

SG1: Any two edges have at most one vertex in com-
mon.
SG2: Two edges E1 = (u1, u2, · · · , um) and E2 =
(v1, v2, · · · , vn) are considered to be equal if and only
if
1. m = n and
2. Either ui = vi for 1 ≤ i ≤ n or ui = vn−i+1

for 1 ≤ i ≤ n. Thus the edge (u1, u2, · · · , um) is the
same as (um, um−1, · · · , u1). The vertices u1 and um
are said to be the end vertices of the edge E1 while
u2, u3, · · · , um−1 are said to be the middle vertices of
E1.

From the above definition, it may be noted that
the vertices in a semigraph are divided into four types
namely end vertices, middle vertices, middle-end ver-
tices and isolated vertices.

A semigraph S may be drawn as a set of
points representing the vertices. An edge E =
(vi1, vi2, · · · , vir) is represented by a Jordan curve
joining the points corresponding to the vertices
(vi1, vi2, · · · , vir) in the same order as they appear in
E. The end points of the curve (i.e the end vertices
of E) are denoted by thick dots. The points lying in
between the end points (i.e middle vertices of E) are
denoted by small circles. If an end vertex v of an edge
E is a middle vertex of some edge E1, a small tangent
is drawn to the circle (representing v on E1) at the end
of E.

Example 1: Let S = (V,X) be a semi-
graph where V = {1, 2, 3, 4, 5, 6, 7} and X =
{(1, 2, 3), (2, 6), (3, 4), (4, 5, 6, 7)}. In S, 1, 3, 4, 7
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are end vertices, 5 is middle vertex and 2, 6 are
middle-end vertices.
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Definition 2 A sub edge of an edge
E = (vi1, vi2, · · · , vin) is a k−tuple E1 =
(vij1, vij2, · · · , vijk) where

1 ≤ j1 ≤ j2 ≤ j3 ≤ · · · ≤ jk ≤ n.

We say that E1 is the sub edge induced by the set of
vertices E1 = (vij1, vij2, · · · , vijk).

Example 2: Consider the semigraph given below.
The edges E1 = (1, 2, 3, 4) and E4 = (4, 6, 7).
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The set of vertices induced by (4, 3, 1) and (4, 7) are
sub edges of the edges E1 and E4 respectively.

Definition 3 An fs−edge in a semigraph S is an
edge in S or a subedge of an edge in S. A v0 − vn
walk in a semigraph S is a sequence of vertices
v0, v1, v2, · · · , vn such that (vi, vi+1) for i = 0 to
n− 1 is an fs−edge of cardinality two. It is closed if
v0 = vn and open otherwise.The vertices v0, vn and
the vertices v1, v2, v3, · · · , vn−1 are end vertices and
internal vertices respectively. A v0−vn walk is a trail
if any two fs−edges in it are distinct. Vertices may be
repeated in a trail. A v0 − vn path is a trail in which
all the vertices are distinct. A cycle is a closed path.

Example 3: Consider the semigraph given below:
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Then
W1 : v1v3v4v7v5v4v6v2v3v4 is a walk.
T1 : v1v3v4v7v5v4v6v2v3 is a trail.
P1 : v1v3v4v7v5 is a path.
C1 : v2v4v6v2 is a cycle.

2.1 Adjacency of two vertices in a semigraph

There are different types of adjacency of two vertices
in a semigraph.

1. Two vertices u and v in a semigraph are said
to be adjacent if they belong to the same edge. Let
Na(u) denote the set of all vertices adjacent to u.

2. Two vertices u and v are said to be consecu-
tively adjacent if in addition they are consecutive in
order as well.

3. Two vertices u and v are said to be e−adjacent
if they are the end vertices of edge in the semigraph.

4. Two vertices u and v are said to be
1e−adjacent if both the vertices u and v belong to the
same edge and at least one of them is an end vertex of
that edge.

Example 4: In the semigraph S given below the ver-
tices 4 and 6 are adjacent. Vertices 5 and 6 are con-
secutively adjacent. Vertices 4 and 7 are e−adjacent.
Vertices 5 and 7 are 1e−adjacent.
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2.2 Graphs associated with a given semi-
graph

Let S be a given semigraph. The graphs given below
are associated with the semigraph S, each having the
same vertex set as S:

(a) End vertex graph Se: Two vertices in Se are
adjacent if they are the end vertices of an edge in S.

(b) Adjacency graph Sa: Two vertices in Sa are
adjacent if they are adjacent in S.

(c) Consecutive adjacency graph Sca: Two ver-
tices in Sca are adjacent if they are the consecutively
adjacent in S.

(d) One end vertex graph S1e: Two vertices in
S1e are adjacent if one of them is an end vertex in S
of an edge containing the two vertices.

Example 5: The various graphs Se, Sa, Sca and S1e

associated with the semigraph S given in the above
example is given below:
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2.3 Bipartite graph in Semigraphs
There are four types of bipartite semigraphs, namely
bipartite semigraph, e−bipartite semigraph, strongly
bipartite semigraph and edge bipartite semigraph. We
consider only bipartite semigraphs.

Definition 4 A set D of vertices in a semigraph is in-
dependent if no edge is a subset of D. The semigraph
S is Bipartite semigraph if its vertex set V can be
partitioned into sets {X,Y } such that X and Y are
independent sets.

Definition 5 A set D of vertices in a semigraph is
e−independent if no two end vertices of an edge be-
long to D. The semigraph S is e−bipartite if its ver-
tex set V can be partitioned into sets {X,Y } such that
both X and Y are e−independent.

Definition 6 A set D of vertices in a semigraph is
strongly independent if no two adjacent vertices be-
long to D. The semigraph S is strongly bipartite if
V can be partitioned into sets {X,Y } such that X
and Y are strongly independent.

Definition 7 The semigraph S is edge bipartite if S
has no odd cycles.

Example 6: Consider the semigraph

i i v

wv
x

1

2 3 4

6

5

Consider the partition of the vertex set as follows:
X = {1, 4, 6} and Y = {2, 3, 5}. No edge of the
above semigraph is a subset of X and Y . Therefore,
the above semigraph is a bipartite semigraph. The
above semigraph is not e−bipartite, since the end
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vertices 1 and 4 lie in X .

Consider the semigraph given below.

v v

v vh i

h

i

B
B
B
B
B
B
B
BB

123

S :

4 5 6 7

8

The vertex set is partitioned into two subsets X =
{1, 4, 6, 7, 8} and Y = {2, 3, 5}. No two end vertices
of an edge lie in one of the subsets X or Y . Hence,
the given graph is e−biparatite.

Remark 8 From the above, it is clear that the only
semigraphs which are strongly bipartite are bipartite
graphs. Also every e−bipartite semigraph is bipar-
tite semigraph but not conversely. The characteriza-
tion of e−bipartite semigraph is given in the following
proposition.

Proposition 9 A semigraph S is e−bipartite if and
only if, its e−graph Se is bipartite.

3 Dominating sets in bipartite semi-
graphs

Two vertices x ∈ X and y ∈ Y are Y a−adjacent if
x and y belongs to the same edge of the semigraph
S. Two vertices u and v in X are Xa−adjacent if u
and v belongs to the same edge of the semigraph S or
an edge E1 containing u and an edge E2 containing
v are adjacent. Let x belong to X . The set NY a(x)
is the set of vertices Xa−adjacent to x in X . We de-
fine ∆Y (G) = max{|NY a(u)| : u ∈ X} and the
maximum degree of a vertex is denoted by ∆. Let y
belong to Y . The set NXa(y) is the set of vertices in
X adjacent to y in Y .

Definition 10 A subset D of X is called a Y a− dom-
inating set if every vertex y ∈ Y is Y a−adjacent
to a vertex of D. The minimum cardinality of a
Y a−dominating set is called the Y a−domination
number of S and is denoted by γY a(S).

Definition 11 A subset D of X is called a
Xa−dominating set if every vertex u in X − D is
Xa−adjacent to a vertex of D.

A subset D of X is called a minimal
Xa−dominating set if no proper subset of D is
a Xa−dominating set. The minimum cardinal-
ity of a minimal Xa−dominating set is called
the Xa−domination number of S and is denoted
by γXa(S). The maximum cardinality of a min-
imum Xa−dominating set is called the upper
Xa−domination number of a semigraph S and is de-
noted by ΓXa(S).

Remark 12 By a γXa−set, we mean a minimum
Xa−dominating set of the semigraph S and by
ΓXa−set, we mean the maximum cardinality of a min-
imal Xa−dominating set.

The minimal Xa−dominating sets was character-
ized as follows in [11].

Theorem 13 A Xa−dominating set D of a bipartite
semigraph is minimal if and only if for every u in D
one of the following conditions hold:
(i) u is a Y a−isolate of D.
(ii) There exists a vertex v in X − D such that
NY a(v) ∪D = {u}.

Proposition 14 In a semigraph G with no isolates,
every Y a−dominating set is a Xa−dominating set.

Remark 15 Converse of the above need not be true.
consider the bipartite semigraph.
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Here X = {2, 3, 5, 7} and Y = {1, 6, 4}. The set
D = {2, 3} is a Y a−dominating set and D1 = {3} is
a Xa−dominating set.

We now define hyper dominating set in bipartite
semigraphs.

Definition 16 Let S be a bipartite semigraph with
|NXa(y)| ≥ 1 for every y ∈ Y . A vertex x ∈ X hyper
dominates y ∈ Y if y ∈ Na(x) or y ∈ Na(NY a(x)).

Example 7: Consider the bipartite semigraph.
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Here X = {2, 3, 5, 7} and Y = {1, 6, 4}. Ver-
tices 1 and 6 are adjacent to 2 and the vertex 4 ∈
Na(NY a(2)). The vertex 2 hyper dominates the ver-
tices 1, 6 and 4.

Definition 17 A subset D ⊆ X is a hyper dominating
set of S if every y ∈ Y is hyper dominated by a ver-
tex of D. A subset D ⊆ X is called a minimal hyper
dominating set of S if no proper subset of D is a hy-
per dominating set of S. The minimum cardinality of
a minimal hyper dominating set of S is called hyper
domination number of S and is denoted by γha(S).
The maximum cardinality of a minimal hyper domi-
nating set of S is called upper hyper dominating set
of S and is denoted by γha(S).

Remark 18 By a γha−set, we mean a minimum hy-
per dominating set of a semigraph S and by Γha−set,
we mean a maximum minimal hyper dominating set.

Example 8: Consider the bipartite semigraph given
below.
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Here X = {2, 3, 5, 7} and Y = {1, 6, 4}. The set {2}
is a hyper dominating set.

Theorem 19 Let S be a bipartite semigraph with
|NXa(y)| ≥ 1 for every y ∈ Y . Then every
Xa−dominating set of S is a hyper dominating set
of S.

Proof: Let D ⊆ X be a Xa−dominating set. By
hypothesis for any y ∈ Y , there exists u ∈ D such
that u and y are Y a−adjacent. If u ∈ D, then y is
hyper dominated by u. If u ∈ X−D, then there exists
v ∈ D such that u and v are Xa−adjacent. Hence,
y ∈ Na(NY a(v)). That is y is hyper dominated by
v ∈ D. ⊓⊔

Remark 20 Converse of the above need not be true.
Consider the semigraph in above example, the set {2}
is hyper dominating set but not a Xa−dominating set.

For any bipartite semigraph S, γha(S) ≤
γXa(S).

Theorem 21 If the bipartite semigraph S has no
Xa−isolates, then γXa(G) ≤ n

2 , n is the number of
vertices in X .

Theorem 22 If the bipartite semigraph S has no
Xa−isolates, then γha(G) ≤ n

2 , n is the number of
vertices in X .

Proof: Every Xa−dominating set is a hyper domi-
nating set and therefore, gammaha(G) ≤ γXa(G) ≤
n
2 . ⊓⊔

Definition 23 Let S be a bipartite semigraph. Let
D ⊆ X . A vertex x ∈ D has a private hyper neigh-
bour y ∈ Y if

(i) x is Y a−adjacent to y or y ∈ Na(NY a(x))
and

(ii) for all vertices x1 ∈ D − {x}, x1 is not
Y a−adjacent to y and y /∈ Na(NY a(x1)).

Definition 24 Let S be a subset of X . Let u belong to
D. The vertex u is called an Y a−isolate of D if there
exists no vertex v in D − {u} such that u and v are
Xa−adjacent.

We characterize the minimal hyper dominating
sets as follows:

Theorem 25 A set D ⊆ X is minimal hyper domi-
nating set if and only if for every u ∈ D one of the
following conditions is satisfied:

(i) u is an Y a−isolate of D.
(ii) there exists y ∈ Y such that y is private hyper

neighbour of u with respect to D.

Proof: Let D ⊆ X be a minimal hyper dominating
set of S. Let u ∈ D. Then, D − {u} is not a hy-
per dominating set. Therefore, some vertex y ∈ Y
is not Y a−adjacent to any vertex of D − {u} and
y /∈ Na(NY a(x)) for every x ∈ D − {u}. Then y
is a private hyper neighbour of u which is (ii) or y is
Y a−adjacent to u which is not Y a−adjacent to any
vertex in D − {u}. Therefore, u is an Y a−isolate of
D.

Let us assume that D is not a minimal hyper dom-
inating set, there exists a vertex u ∈ D such that
D−{u} is a hyper dominating set. Hence, y ∈ Na(u)
or y ∈ Na(NY a(u)) is hyper dominated by a vertex in
D − {u}. That is, both the conditions (i) and (ii) are
not satisfied. ⊓⊔
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3.1 Bipartite semigraphs with γha(S) = 1

Theorem 26 In a bipartite semigraph S, γha(S) = 1
if and only if there exists a vertex x ∈ X such that
NXa[x] is a Y a−dominating set.

Proof: Suppose there exists x ∈ X such that NXa[x]
is a Y a−dominating set. Then every y ∈ Y is
Y a−adjacent to x or y ∈ Na(NY a(x)). Hence, {x}
is hyper dominating set. Therefore, γha(S) = 1.

Conversely, if γha(S) = 1, then every y ∈ Y is
Y a−adjacent to a vertex x ∈ X or y ∈ Na(NY a(x)).
Hence, NY a[x] is a Y a−dominating set. ⊓⊔

Theorem 27 In a bipartite semigraph S, γha(S) = 1
if and only if there exists x ∈ X(S) such that any y ∈
Y is either adjacent to x or adjacent to u ∈ X − {x}
which is Xa−adjacent to x.

Theorem 28 In a bipartite semigraph, γha(S) ≥
|Y |

∆∆Y
.

Proof: A vertex in X can hyper dominate at most
∆∆Y vertices. Hence, γha(S) ≥ |Y |

∆∆Y
. ⊓⊔

3.2 Hyper irredundant set

The idea of Xa−irredundant sets was introduced in
[11] and the existence of such sets are proved.

Definition 29 Let G be a bipartite semigraph. Let
S be a subset of X . Let u belong to S. A vertex
v is a private Xa−neighbour of u with respect S if
u is the only vertex of S, Xa−adjacent to v. A set
S is Xa−irredundant set if every u in S has a pri-
vate Xa−neighbour. The Xa−irredundance num-
ber of a semigraph G is the minimum cardinality of
a maximal Xa−irredundant set of G and is denoted
by irXa(G). The upper Xa−irredundance number
of a graph G is the maximum cardinality of a max-
imal Xa−irredundant set of G and is denoted by
IRXa(G).

Here we define hyper irredundant set and prove
the existence of such sets.

Definition 30 A subset D of X is hyper irredundant
set if every v ∈ D has a private hyper neighbour. A
subset D of X is a maximal hyper irredundant set if
any super set of D is not a hyper irredundant set. The
hyper irredundance number of a semigraph S is the
minimum cardinality of a maximal hyper irredundant
set of vertices and is denoted by irha(S). The upper
hyper irredundance number of a semigraph S is the
maximum cardinality of a maximal hyper irredundant
set and is denoted by IRha(S).

Theorem 31 A subset of a hyper irredundant set of S
is a hyper irredundant set.

Proof: Let D ⊆ X be a hyper irredundant set of
S. Let T ⊂ D. Let x ∈ D, x has a private hy-
per neighbour in Y with respect to D. That is x is
Y a−adjacent to y or y ∈ Na(NY a(x)). Also for all
vertices x1 ∈ D − {x}, x1 is not adjacent to y and
y /∈ Na(NY a(x)). Since T − {x} ⊂ S − {x} for
every x1 ∈ T − {x}, we get x1 is not adjacent to y
and y /∈ Na(NY a(x)). Therefore, T is a hyper irre-
dundant set. ⊓⊔

Remark 32 Hyper irredundant set is a hereditary
property.

Theorem 33 In a bipartite semigraph S, every hyper
dominating set D is a minimal hyper dominating set if
and only if it is hyper dominating and hyper irredun-
dant.

Proof: Let D be a hyper dominating set. Then D is a
minimal hyper dominating set if and only if for every
u ∈ D, there exists y ∈ Y which is not hyper domi-
nated by D − {u}. Equivalently, D is minimal hyper
dominating set if and only if it is hyper irredundant
set.

Conversely, Let D be both hyper dominating set
and hyper irredundant set.
Claim: D is minimal hyper dominating set.

If D is not minimal hypr dominating set, there
exists v ∈ D for which D− {v} is hyper dominating.
Since D is hyper irredundant, v has a private hyper
nieghbour u. By definition, u is not hyper adjacent
to any vertex in D − {v}. That is, D − {v} is not
hyper dominating set, a contradiction. Hence, D is a
minimal hyper dominating set. ⊓⊔

Remark 34 By the above theorem, any minimal hy-
per dominating set is an hyper irredundant set. There-
fore, hyper irredundant sets exists.

Theorem 35 Every minimal hyper dominating set is
a maximal hyper irredundant set.

Proof: Every minimal hyper dominating set D is hy-
per irredundant set.

Claim: D is a maximal hyper irredundant set.
Suppose D is not maximal hyper irredundant set.

Then there exists a vertex u ∈ X −D for which D ∪
{x} is hyper irredundant. There exists at least one
vertex y ∈ Y which is a private hyper neighbour of
u with respect to D ∪ {u}. That is no vertex in D is
hyper adjacnt to y. Hence, D is not hyper dominating
set, a contradiction. Hence, D is a maximal hyper
irredundant set. ⊓⊔
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Remark 36 Clearly

irha(S) ≤ γha(S) and Γha(S) ≤ IRha(S).

Thus we have the hyper dominating chain or hyper
dominating sequence

irha(S) ≤ γha(S) ≤ iha(S)
≤ βiha(S) ≤ Γha(S) ≤ IRha(S)

3.3 Hyper independent set
The independent set Xa−independent set,
Xa−hyper independent set and hyper Xa− in-
dependent set was defined in [11].

Definition 37 Two vertices u and v in X are
Xa−independent if u and v are not Xa−adjacent.
A Subset D of X is called a Xa−independent set if
any two vertices in D are Xa−independent. A set D
is called a maximal Xa−independent set if we cannot
find a Xa−independent set D1 containing D. The
maximum cardinality of a maximal Xa−independent
set is called the Xa−independence number and is de-
noted by βXa(G).

Definition 38 A subset D of X is called Xa−hyper
independent set if NXa(y) is not contained in D,
for every y ∈ Y . The maximum cardinality of a
Xa−hyper independent set of a semigraph is called
Xa−hyper independence number and is denoted by
βha(S).

Definition 39 A subset D of X is called hyper
Xa−independent set if NY a(x) is not contained in
D, for every x in D. The maximum cardinality of a
hyper Xa−independent set of a semigraph is called
hyper Xa−independence number and is denoted by
βhXa(G).

Theorem 40 In a semigraph, a subset D is a
Xa−dominating set if and only if X − D is hyper
Xa−independent set.

Theorem 41 In a semigraph, a subset D is a
Y a−dominating set if and only if X−D is Xa−hyper
independent set.

We define hyper independence in semigraph as
follows:

Definition 42 A subset F of X is called a hyper in-
dependent set if every y ∈ Y satisfies one of the con-
ditions:

(i) y /∈ Na(x) for every x ∈ F or
(ii) there exists a neighbour of y say x in F such

that NY a(x) is not contained in F .
The maximum cardinality of a hyper independent set
is called the hyper independence number and is de-
noted by βhY a(S).

Theorem 43 In a semigraph, every Xa−independent
set is a Xa−hyper independent set.

Proof: Let D be a Xa−independent set of a semi-
graph S. Any two vertices in D are not Xa−adjacent.
Equivalently, for every y ∈ Y , NXa(y) is not con-
tained in D. Hence, D is a Xa−hyper independent
set. ⊓⊔

Theorem 44 In a semigraph, every Xa−hyper inde-
pendent set is a hyper Xa−independent set.

Theorem 45 In any bipartite semigraph S, every
Xa−hyper independent set is hyper independent set,
but not conversely.

Proof: Let D be a Xa−hyper independent set. Then
NXa is not contained in D for every y ∈ Y . Equiv-
alently, y /∈ Na(x) for every x ∈ D or there exists a
Xa−neighbour of y say x ∈ D such that NY a(x) is
not contained in D. Hence, D is hyper independent
set. ⊓⊔

Remark 46 The converse of the above need not be
true. Consider the bipartite semigraph.
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Here X = {2, 3, 5, 7} and Y = {1, 6, 4}. The subset
D = {3, 5, 7} is a hyper independent set but not a
Xa−hyper independent set.

A Gallai-type theorem is of the form x(G) +
y(G) = n where x(G), y(G) are integer valued mini-
mum or maximum parameters defined on the graph.
Gallai type theorems involving a−edge covering
number and a−edge independent number, ca−edge
covering number and ca−edge independence number
are proved in semigraphs. In bipartite semigraphs,
the parameter involving Xa−domination number and
hyper Xa−independence number, Y a−domination
number and Xa−hyper independence number are
also proved.

Theorem 47 In any bipartite semigraph, D is a hyper
dominating set if and only if X −D is hyper indepen-
dent set.
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Proof: Let D be hyper dominating set. Every y ∈ Y
is hyper dominated by a vertex of D. Equivalently,
y /∈ Na(u) where u ∈ X−D, Y a−adjacent to y such
that NXa(u) is not contained in X − D. Therefore,
X −D is hyper independent set.

Conversely, let D be a hyper independent set.
Then y /∈ Na(x) for every x ∈ D or there exists a
neighbour of y say x in D such that NY a(x) is not
contained in D. Equivalently, y ∈ Na(u) for some
u ∈ X − D or there exists u ∈ X − D such that
Na(NY a(x)) contains y. Hence, X − D is a hyper
dominating set of S. ⊓⊔

Corollary 48 In a bipartite semigraph S, γha(S) +
βha(S) = |X|.

Proof: Let D be a γha− set. Then X − D is hyper
independent set. Hence, γha(S) + βha(S) ≥ |X|.

Conversely, let F be a hyper independent set.
Then X − F is a hyper dominating set. Hence,
γha(S) + βha(S) ≤ |X|. The result follows. ⊓⊔

We now characterize semigraphs for which
γha(G) = γXa(G).

Theorem 49 Let G be a bipartite semigraph. Then
γha(G) = γXa(G) if and only if there exists a γha−set
S such that X − S is hyper Xa−independent set.

Proof: Let S be a γha−set such that X − S is hyper
Xa−independent set. Then S is a Xa−dominating
set of G. Therefore, γXa(G) ≤ |S| = γha(G). This
is equivalent to γXa(G) ≤ γha(G). But, γha(G) ≤
γXa(G). Therefore, γha(G) = γXa(G).

Conversely, let us assume that γha(G) =
γXa(G). Let D be a γXa−set of G. Therefore,
X −D is a hyper Xa−independent set of G. But ev-
ery Xa−dominating set is a hyper dominating set and
γha(G) = γXa(G), it follows that D is a minimum
hyper dominating set of G. ⊓⊔

We now characterize semigraphs for which
γha(G) = γY a(G).

Theorem 50 Let G be a bipartite semigraph. Then
γha(G) = γY a(G) if and only if there exists a γha−set
S such that X − S is Xa−hyper independent set.

Proof: Let S be a γha−set such that X −
S is Xa−hyper independent set. Then S is a
Y a−dominating set of G. Therefore, γY a(G) ≤
|S| = γha(G). This is equivalent to γY a(G) ≤
γha(G). But, γha(G) ≤ γXa(G) ≤ γY a(G). There-
fore, γha(G) = γY a(G).

Conversely, let us assume that γha(G) = γY a(G).
Let D be a γY a−set of G. Therefore, X − D
is a Xa−hyper independent set of G. But every
Y a−dominating set is a Xa−dominating set and

hence, hyper dominating set and γha(G) = γY a(G),
it follows that D is a minimum hyper dominating set
of G. ⊓⊔

We now find a characterization of γha(G) = 1 in
terms of hyper independent set.

Theorem 51 Let G be a bipartite semigraph with
γha(G) = 1. Let x ∈ X be such that NY a[x] = Y .
Then X−{x} is a hyper independent set. Conversely,
if X − {x} is hyper independent set for some x ∈ X ,
then γha(G) = 1.

Proof: Let γha(G) = 1. Suppose, S is a γha−set of
G. Then, S = {x} for some x ∈ X . Therefore, for
every y ∈ Y , either y ∈ Na(x) or y ∈ Na(NY a(x)).
Suppose y ∈ Na(x) and y /∈ Na(u) for every u ∈
X−{x}. Then y satisfies the first condition for hyper
independence of X − {x}.

Suppose y ∈ Na(x) and y ∈ Na(u) for some u ∈
X−{x}. Then x and u are Xa−adjacent. That is x ∈
NY a(u). That is y satisfies the second condition for
hyper independence of X−{x}. Suppose y /∈ Na(x).
Then there exists u ∈ NY a(x) such that y ∈ Na(u).
That is y ∈ Na(u), u ∈ X − {x} and x ∈ NY a(u).
Therefore, y satisfies the second condition for hyper
independence of X − {x}. Therefore, X − {x} is
hyper independent set.

Conversely, suppose for some x ∈ X , X − {x}
is hyper independent. Then for any y ∈ Y , NXa(y) is
not contained in X − {x} or if NXa(y) ⊆ X − {x}
then there exists u ∈ NXa(y) such that NY a(u) is not
contained in X − {x}. That is, for any y ∈ Y , either
y is adjacent to x or there exists u ∈ X such that y
is adjacent to u and u is Xa−adjacent to x. That is,
γha(G) = 1. ⊓⊔

3.4 Inequalities involving dominating pa-
rameters and irredundant parameter

The vertex set X is partitioned as follows. Let
S0 ⊆ X . Let S1 be the set of vertices in X − S0,
Xa−dominated by S0. i.e., S1 = NXa[S0]− S0. Let
S2 = X − S0 − S1. Thus any subset S0 ⊆ X defines
a partition of X into three sets {S0, S1, S2}.

In what follows S1 is a semigraph without iso-
lates.

Theorem 52 Let {S0, S1, S2} be a partition of X of
a connected nontrivial semigraph S defined by S0. If
S0 is a hyper dominating set, then S2 is a Xa−hyper
independent set of S.

Proof: Let S0 be a hyper dominating set. Let us
assume that S2 is not a Xa−hyper independent set.
Then there exists y ∈ Y such that NXa(y) ⊆ S2.
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Therefore, y ∈ Y is not hyper dominated by any ele-
ment of S0, a contradiction. Hence, S2 is a Xa−hyper
independent set. ⊓⊔

Theorem 53 Let {S0, S1, S2} be a partition of X of
a connected nontrivial bipartite semigraph S defined
by S0. If S0 is a minimal hyper dominating set, S1 is
a Xa−dominating set of S.

Proof: Let S0 be minimal hyper dominating set of S.
Suppose S1 is not a Xa−dominating set of S. Then
there exists a vertex v ∈ X − S1, not Xa−adjacent
to any vertex in S1. Since, v /∈ S1 either v ∈ S0 or
v ∈ S2.
Case 1: Assume v ∈ S0. Since, S0 is minimal hyper
dominating set, S0 is maximal hyper irredundent set.
Therefore, v has a private hyper neighbour y ∈ Y .
Equivalently, y ∈ Na(NY a(v)) or y ∈ Na(v). In
either case v is Xa−adjacent to a vertex of S1, a con-
tradiction.
Case 2: Let v ∈ S2. By the above theorem, S2

is Xa−hyper independent set of S. Since v is not
a isolate of S, there exists y ∈ Y such that v is
Y a− adjacent to y. Since, S2 is hyper independent,
NXa(y) is not contained in S2. Therefore, there ex-
ists x ∈ NXa(y) such that x ∈ S0 ∪ S1. If x ∈ S0,
then v ∈ S1, a contradiction. Therefore, S1 is a
Xa−dominating set. ⊓⊔

Theorem 54 In a bipartite semigraph S, Γha(S) +
γXa(S) ≤ p.

Proof: Let D be a Γha−set of S. Then, X −D is a
Xa−dominating set. Therefore, γXa(S) ≤ |X −D|.
Hence, Γha(S) + γXa(S) ≤ p. ⊓⊔

Theorem 55 In a bipartite semigraph S, ΓXa(S) +
γha(S) ≤ p.

Proof: Let D be a ΓXa−set of S. Then, D is a min-
imal Xa−dominating set of S. Therefore, X − D is
a Xa−dominating set of S. Hence, X −D is a hyper
dominating set of S. Therefore, γha(S) ≤ |X = D|.
Hence, ΓXa(S) + γha(S) ≤ p. ⊓⊔

The upper bound for the sum of domination
number and irredundance number was found in [8].
The upper bound for the sum of upper hyper irre-
dundance number and Xa−domination number, up-
per Xa−domination number and hyper irredundance
number are found.

Remark 56 By irha−set and IRha−set, we mean
minimum cardinality and maximum cardinality of a
maximal hyper irredundant set.

Theorem 57 Let S be a bipartite semigraph with
NY a(x) ̸= ϕ for every x ∈ X . Then IRha(S) +
γXa(S) ≤ |X|.

Proof: Let D be a IRha−set of S. Then, D is a
maximal irredundant set. Therefore, D is hyper ir-
redundant set. That is every x ∈ D has a private
neighbour y ∈ Y . Then x is Y a−adjacent to y or
y ∈ Na(NY a(x)) and for all vertices x1 ∈ D − {x},
x1 is not adjacent to y and y /∈ Na(NY a(x)).
Case (i): x is Y a−adjacent with y.

Since, NY a(x) ̸= ϕ, x has Xa−neighbours. Let
z be any Xa−neighbour of x. Suppose, x ∈ D. Then
z is not Xa−adjacent to y and y /∈ Na(NY a(z)). But
y ∈ Na(NY a(x)), since x is Xa−neighbour of z, a
contradiction. Therefore, any Xa−neighbour of x is
in X −D.
Case (ii): y ∈ Na(NY a(x)).

Vertices in Na(y) are in X − D. Then Na(y) ⊆
X − D. Otherwise, we get a contradiction to y ∈ Y
is a private hyper neighbour of x ∈ D. Hence, for
every x ∈ D there exists x1 ∈ X − D such that
x and x1 are Xa−adjacent. That is, X − D is a
Xa−dominating set. Therefore, γXa(S) ≤ |X −D|.
Hence, IRha(S) + γXa(S) ≤ |X|. ⊓⊔

Theorem 58 Let S be a bipartite semigraph with
NY a(x) ̸= ϕ for every x ∈ X . Then, IRXa(S) +
γha(S) ≤ |X|.

Proof: Let D be a IRXa−set of S. Every element
x ∈ D has a private Xa−neighbour. Consider the
set X − D. Since X − Dis a Xa−dominating set,
elements of Y are either Y a−adjacent to X − D or
Y a−adjacent to vertices which are Xa−adjacent to
elements of X − D. Therefore, X − D is a hyper
dominating set. Therefore, γha ≤ |X −D|. Hence,
IRXa(S) + γha(S) ≤ |X|. ⊓⊔

Theorem 59 In a bipartite semigraph S, Γha(S) ≤
ΓXa(S).

Proof: Let D be a Γha−set. Then D is a minimal
hyper dominating set of maximum cardinality. Let
D = {u1, u2, u3, · · · , ud}. Then every ui ∈ D is a
Y a−isolate of ⟨D⟩ or there exists y ∈ Y such that y
is private hyper neighbour of u.

Case A: Every ui ∈ D is Y a−isolate of ⟨D⟩.
For i ̸= j, NY a(ui) ̸= NY a(uj). Otherwise,

i ̸= j, NY a(ui) = NY a(uj) then D−{ui) or D−{uj}
is hyper dominating set, a contradiction to the fact that
D is minimal hyper dominating set. Hence every ver-
tex in D has a unique Y a−private hyper neighbour
in S. Therefore, every minimal Xa−dominating set
must contain at least |D| elements. Hence, ΓXa(S) ≥
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|D| elements. Hence, we have the inequality ΓXa ≥
|D| = Γha(S).

Case B: There exists y ∈ Y such that y is private
hyper neighbour of u.

Sub case(i): y ∈ Na(u).
Since y is private hyper neighbour N(y) ⊆ (X −

D)∪{u}. No other vertex in D−{u} is Xa−adjacent
to Na(y), for otherwise, we get a contradiction to y is
private hyper neighbour of u.

Sub case(ii): y ∈ Na(NY a(u)).
Clearly Na(y) ∈ X − D. Otherwise, we get a

contradiction to y is private hyper neighbour of u and
no other vertex in D−{u} is Xa−adjacent to vertices
in Na(y).

In the above two cases, any minimal
Xa−dominating set must contain at least |D|
elements. Hence, ΓXa(S) ≥ |D| = Γha(S).

4 Conclusion
The concept of hyper domination in bipartite semi-
graph was defined. The dominating chain involving
hyperdomination in bipartite semigraph are proved.
Some inequalities involving domination parameters
and irredundant parameters is proved. Gallai type the-
orem involving hyperdomination number and hyper
independence number are also proved.
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